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Abstract
The interleukin-2 molecule and receptor were the first of the interleukins to be discovered and
characterized at the molecular level. Now after 20 years of effort, two groups have succeeded in
determining the structure of IL2 bound to the external domains of the three receptor chains in a
quaternary complex. What do we know now that we did not know before this structural
information was available, and how do these new data help us to develop new therapies?

In the early 1980s, soon after we had characterized the IL2
molecule as a 15.5 kDa variably glycosylated protein[1,2],
had purified it to homogeneity[2], and had discovered
and characterized the IL2 receptor (IL2R)[3], our atten-
tion turned to trying to determine exactly how IL2 binding
to its receptor leads to signals that promote cellular prolif-
eration. One approach to this question involved deter-
mining the 3-dimensional (3D) structures of the IL2
molecule and the IL2R via X-ray crystallography. How-
ever, it took more than a decade for us and others to dis-
cover that the IL2R is comprised of three distinct non-
covalently linked chains, termed alpha (α, CD25)[4], beta
(β, CD122) [5-7], and gamma (γ, CD132)[8]. Subse-
quently, as the cDNAs encoding each chain became avail-
able, we began to collaborate with Ian Wilson of the
Scripps Research Institute to try to determine the struc-
tures of these molecules. Instrumental in these experi-
ments was Tom Ciardelli at Dartmouth, who constructed
expression systems to produce large amounts of the pro-
teins to be used in obtaining crystals of the molecules,
which he also used in rigorous reduction experiments
with binding studies using isolated soluble receptor mol-
ecules.

Anything is possible in science, but some things take a
very long time. Indeed, crystals of IL2 bound to the IL2R
α chain were readily achieved as early as 1989[9], but they
remained recalcitrant to structure solution for many years.
Moreover, the fact that the IL2R is comprised of three sep-
arate chains made the task of crystallizing all four proteins
bound together exceedingly difficult. Twenty years after
our experiments were initiated, Chris Garcia at Stanford
with his team of two talented post docs, Xinquan Wang
and Mathias Rickert, succeeded in determining the struc-
ture of IL2 bound to the external domains of the three
IL2R chains in a quaternary complex[10]. Chris is a
former postdoc of Ian Wilson, and he generously shared
their refined coordinates with Ian, so that two other tal-
ented members of Ian's group, postdoc Deborah Stauber
and graduate student Erik Debler, could finish the struc-
ture determination of the IL2/IL2R quaternary complex,
which they also had also assembled and crystallized[11].

Before examining the new data, it is useful to summarize
the information that we have gained over the past 25 years
as to how the IL2/IL2R ligand/receptor complex func-
tions. IL2 itself is a small globular glycoprotein comprised
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of four antiparallel α helices[12]. IL2 was the first cytokine
found to mediate its effects via a cell surface binding site
that satisfied all of the requirements to be termed a classic
hormone receptor, originally defined by Langely in 1878
and 1905[13,14]. Thus, IL2 binds to the IL2R with high
affinity, stereospecificity, and saturability. In other words,
there are a finite number of sites expressed on activated
lymphocytes that are capable of binding only IL2, among
all of the other cytokines. In addition, IL2 signals the cell
at the same low concentrations that lead to binding to the
IL2R at steady state, thus satisfying the requirement that
true receptors must signal a physiological response after
binding the ligand at physiological concentrations. The
question before us is how these classic receptor character-
istics are created at the molecular level.

The high affinity of the IL2R (Kd = 10-11 M) results from a
rapid association rate contributed by the α-chain (kon =
107 M-1sec-1), combined with a relatively slow dissocia-
tion rate (koff = 10-4 sec-1) contributed by both the β and γ
chains[15,16]. Accordingly, from this information, it was
concluded that distinct areas of the IL2 molecule bind to
each of the three receptor chains. Moreover, it was also
found that the α chain does not participate in signaling,
whereas both the β and γ chains are necessary for signal-
ing[17,18]. One of the perplexing aspects of the SAR of
IL2/IL2R binding was the contribution of the γ chain, in
that it was discovered that the γ chain is a component of
several other cytokine receptors, including the IL4R, IL7R,
IL9R, IL15R, and the IL21R [19-21]. Exactly how each of
these different, although similar, cytokines could actually
bind to the same γ chain remained an enigma.

A series of reports from the Ciardelli group at Dartmouth
over the 1990s using isolated receptor chains and Surface
Plasmon Resonance (SPR) dissected the complex relation-
ships between IL2 and the three receptor chains [22-27]).
Their data supported a model in which the α and β chains
pre-associate on the cell surface to form a pseudo-high
affinity site with a faster on-rate and a slower off-rate than
either of the individual subunits. Thus, the efficiency of
ligand capture is facilitated by the formation of this α/β
chain heterodimer. Moreover, these data are consistent
with the IL2-induction of α chain expression[28], which
results in a 10–20-fold excess of α chain vs. β chain expres-
sion, thereby favoring the formation of an α/β het-
erodimer on the cell surface via the law of mass action.

In addition, their data indicated that signaling only occurs
subsequent to the recruitment of the γ chain to the IL2/α/
β trimeric complex[25,27]. Even though the γ chain is
only weakly able to interact with IL2 by itself (Kd > 700
μM), when recruited to join the heterotrimer of IL2 bound
to the α/β heterodimer, the γ chain reduces the off-rate of
the bound ligand substantially by forming a stable quater-

nary ligand/receptor complex. Thus, the model predicted
that the mechanism controlling the duration of receptor
signaling is the rate of ligand/receptor internalization (t1/

2 = 15 minutes), rather than ligand dissociation (t1/2 = 45
minutes), as we had proposed originally[29]. This is
important, given that the cell counts the total number of
triggered IL2Rs, which is responsible for signaling a quan-
tal (all-or-none) cellular response [30-32].

An additional view of how IL2 interacts with the three
receptor chains was reported by Garcia's group using Iso-
thermal Titration Calorimetry and Multi-Angle Light Scat-
tering[33]. Even in the absence of IL2, they found low
affinity binding of the α and β chains (Kd = 278 nM),
thereby supporting the Ciardelli SPR studies. Also, similar
to Ciardelli's SPR results, there was no binding between
the α and γ chains or the β and γ chains in the absence of
IL2. Also, similar to previous IL2 binding studies, a defi-
nite affinity of IL2 for isolated α chains (Kd = 10 nM) and
isolated β chains (Kd = 144 nM), but little or no affinity for
IL2 binding to isolated γ chains was found using these
thermodynamic techniques. These investigators inter-
preted their data as consistent with IL2 binding rapidly
first to isolated α chains, followed by the α-bound IL2
being stabilized by binding to isolated β chains. Alterna-
tively, their data were also consistent with IL2 binding to
a preformed α/β dimeric complex as proposed by
Ciardelli. All of the data were consistent with the IL2/α/β
trimeric complex binding to the γ chain to form the final
signaling complex.

The crystallization of IL2 bound to the external domains
of the three receptor chains in a quaternary com-
plex[10,11] revealed that the sites on IL2 that interact with
the three chains of the IL2R do not overlap, except for a
small but significant region, as predicted from the earlier
binding and SPR studies. The 4-helix bundle of IL2 is
clamped between the elbow regions of the β and γ chains.
The IL2 molecule is held decisively between these two
receptor chains, which converge to form a Y shape, with
IL2 bound in the fork of the Y. In contrast, the other side
of the IL2 molecule binds to the α chain, which Garcia's
team had previously delineated from binary IL2/α chain
crystals[34]. It is also noteworthy that the α chain itself
does not contact either the β or γ chains in the crystal
structure.

The crystal structure essentially does not help in discrimi-
nating whether IL2 binds first to the α chain alone or to a
preformed α/β heterodimer. However, the pseudo-high
affinity of the IL2/α/β trimeric complex (i.e. Kd ~300 pM)
clearly indicates that the trimeric complex is more stable
than either IL2 bound to the α chain alone (Kd = 10 nM)
or to the β chain alone (Kd = 450 nM) as shown by
Ciardelli's data. In any event, the IL2/α/β trimer would
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then recruit the γ chain into the quaternary complex capa-
ble of signaling, which is facilitated by the large composite
binding site on the IL2-bound β chain for the γ chain.
Since only a few residues of IL2 interact with both β and γ
chains, binding of IL2 may induce conformational
changes in the β chain that would further promote recruit-
ment of the γ chain. This interpretation is consistent with
data obtained by the Ciardelli group using SPR[27]. More-
over, the surface area of IL2-γ chain contact is the smallest
of the three receptor chains (970 Å2), while the surface
area of the β-γ chain contact is larger (1,640 Å2). Accord-
ingly, the γ chain can serve as a receptor subunit for many
similar but different cytokines by a cytokine-dependent
binding of other receptor subunits to the γ chain, rather
than binding of the cytokines themselves to the γ chain.
Furthermore these data provide support for the search for
inhibitors of the β chain-γ chain interaction as new immu-
nosuppressants.

All of this structural information is entirely consistent
with what we know about IL2R signaling, in that the cyto-
plasmic domain of the β chain is complexed with the
JAK1 tyrosine kinase, while the γ chain cytoplasmic
domain is complexed with the JAK3 kinase[18]. Thus,
only when IL2 binding brings the external domains of
these two receptor chains into close proximity, can signal-
ing occur by trans phosphorylation of their cytoplasmic
domains. In addition, as emphasized by Ciardelli's SPR
data and by Garcia's energetics data, these structural data
indicate that the quaternary ligand/receptor complex is
very stable and signaling will continue until the receptor
with bound ligand is internalized and degraded.

In the context of all of these new structural data, an earlier
report from Marrack's group[35] is perplexing, in that it
showed that the injection of mice with monoclonal anti-
bodies (mAb) reactive with IL2 that block the IL2/IL2R α
chain interaction, thereby inhibiting IL2-promoted T cell
proliferation in vitro, actually increased the number of pro-
liferating CD8+ T cells in vivo, instead of decreasing them
as expected. These authors interpreted their results as
showing that IL2 functioned to actually kill CD8+ T cells
in vivo. Of course this interpretation is based upon the
assumption that the anti-IL2 should have blocked IL2-α
chain binding and T cell activation in vivo, as it did in vitro.

Now, a more recent report from Sprent's group[36]
returned to this paradox; i.e. that the proliferation of
CD8+ T cells with a memory phenotype (defined by a
high expression of the IL2R β chain, but low or absent lev-
els of the IL2R α chain), can be increased by injecting
either IL2 itself or an IL2-reactive, inhibitory mAb. Since
the interpretation by Marrack's group was counterintui-
tive, Sprent repeated their experiments, and also found an
increase in CD8+ T cells using the same mAb. However, in

addition, they used IL2 gene deleted mice, and found that
the enhanced proliferative effect of the anti-IL2 treatment
was abolished in this setting.

Consequently, they then hypothesized that perhaps the
IL2-reactive mAb functioned to actually increase biologi-
cal activity of endogenous IL2 via the formation of
immune complexes with IL2, thereby preserving and pro-
moting IL2 activity. This was in fact found to be the case,
and the simultaneous administration of IL2 and IL2-reac-
tive mAb resulted in a dramatic increase (> 100-fold) in
the total numbers of CD8+ T cells, and NK cells as well,
which also express both the β chain and the γ chain of the
IL2R.

On the basis of these data and others, Sprent concluded
that the stimulatory IL2-reactive mAb binds to a site on
IL2 that occludes its binding to the α chain, but does not
impair binding to the β chain. In other words, the IL2-
reactive MoAb takes the place of the α chain on cells in
vivo, and presents IL2 to the β and γ chains, thereby stim-
ulating proliferation, particularly of memory CD8+ T cells
that already express the β/γ chains as part of the IL15R. In
light of the new structural data, Sprent's interpretation
makes perfect sense. In addition, as Fab2 fragments of the
IL2/mAb complex were inefficient in promoting in vivo T
cell proliferation, these findings are consistent with IL2/
mAb immune complexes on APCs substituting for the
cell-bound α chain on T cells serving as a ligand carrier
and/or capturer, as suggested by Stauber et. al. [11].

If further investigation supports these findings, the use of
cytokine immune complexes as immune stimulants could
very well markedly improve immunostimultatory ther-
apy, in that the cytokine immune complexes have a much
improved in vivo half-life compared with cytokines alone.
For example, the half-life of IL2 administered intrave-
nously is only ~10 minutes due to distribution into the
total body extracellular space, which is large, ~15 L in an
average sized adult. Subsequently, IL2 is metabolized by
the kidneys with a half-time of ~2.5 hours. By comparison
the in vivo half-life of administered Ig is measured in sev-
eral days if not weeks[37].

Still left obscure regarding the function of the quaternary
IL2/IL2R complex is the exact molecular rearrangements
that occur in the intracytoplasmic domains of the IL2R
chains, especially the β and γ chains, in that these
domains have not yet been crystallized. Thus far, all
efforts to date to crystallize these domains have been fruit-
less, and may indicate that the cytoplasmic tails do not
adopt a permanent well-defined structure, which is a pre-
requisite for crystallization. However, two additional new
reports on signaling from the intracytoplasmic domains
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via the JAKS to STAT5a/b have recently underscored the
importance of these intracellular domains[38,39].

All of the cytokines that utilize the IL2R common γ chain
(γc), have been found to be critical both for their function
in the periphery after maturation, and for lymphoid
development as well. In particular, mutations of the IL7R
α chain, or the γc chain, or its associated kinase, JAK3, are
the major causes of human severe combined immunode-
ficiency (SCID)[18]. Three signaling pathways are known
to be activated via the γc chain, the Ras/Raf/MAPK path-
way[40], the PI3K/Akt pathway[41], and the STAT5 path-
way[42]. All evidence pointed to the STAT5a/b molecules
as being the primary signalers of lymphocyte develop-
ment as well as being critical for promoting cell cycle pro-
gression of mature lymphocytes. However, the
importance of STAT5a/b in transmitting signals from
IL7Rs to developing lymphocytes became controversial,
primarily because mice that had a deletion of the N-termi-
nal exon of the STAT5a/b molecules had relatively normal
lymphocyte development[43]. However, these mice still
expressed a truncated and partially functional STAT5 pro-
tein.

Now, utilizing mice that had total deletions of the entire
STAT5a/b loci, John O'Shea's group[38] and Veronika
Sexl's group[39] have both reported that the phenotype of
these mice is as expected, severe combined immunodefi-
ciency. In addition, Sexl's group reports that these mice
are not susceptible to malignant transformation by the Src
family kinase, Abelson. This last finding is extremely
important, for it provides the missing link between the Src
family kinases and transformation that has eluded inves-
tigators for over 25 years. In addition, these data are con-
sistent with the known functions of STAT5, to activate the
program for cell cycle progression through G1 to S-phase,
primarily by promoting the expression and activity of the
G1 D2 & 3-type cyclins[42]. In this regard, it is noteworthy
that v-src, which phosphorylates STAT3 constitutively, has
recently been found capable of transforming cells by acti-
vating the expression of cyclin D1[44]. It is now predicta-
ble that the identification of STAT inhibitors may well be
very effective anti-cancer agents, and perhaps immuno-
suppressive agents as well.
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